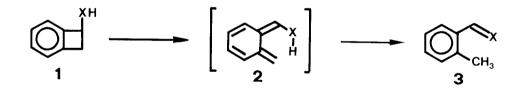
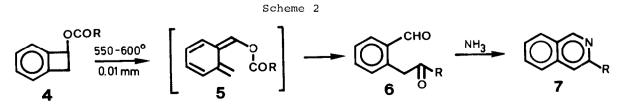
THERMOLYTIC RING OPENING OF ACYLOXYBENZOCYCLOBUTENES:

AN EFFICIENT ROUTE TO 3-SUBSTITUTED ISOQUINOLINES

Peter Schiess*, Martine Huys-Francotte and Caspar Vogel


Institut für Organische Chemie der Universität

St. Johanns-Ring 19, CH-4056 Basel, Switzerland.


Summary: Upon flash vacuum pyrolysis acyloxybenzocyclobutenes <u>4</u> rearrange through an intramolecular 1,5-acyl shift to 2-formylbenzyl ketones <u>6</u> which can be converted to 3-substituted isoquinolines 7.

It is well known, that benzocyclobutenes of general structure $\underline{1}$ are thermolabile and rearrange at moderate temperature to unstrained, monocyclic products $\underline{3}$ via their unstable, orthoquinoid valence isomers $\underline{2}$ by way of a sigmatropic 1,5-hydrogen shift reaction (Scheme 1) [1].

Scheme 1

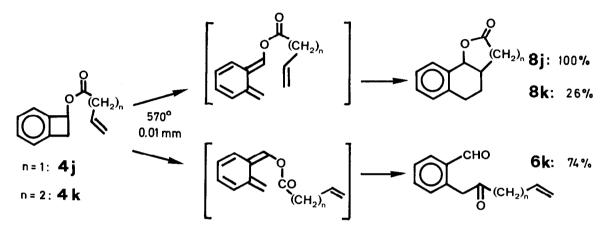
Some time ago we [2] and others [3] have shown that acyl groups can participate in uncatalyzed sigmatropic 1,5-shift reactions at similar rates as hydrogen atoms. Acyloxybenzocyclobutenes $\underline{4}$, therefore, were expected to rearrange via $\underline{5}$ to 2-formylbenzyl ketones $\underline{6}$ (Scheme 2). The experiments reported in the following bear out this expectation.

Thus, acetoxybenzocyclobutene <u>4b</u> ($R = CH_3$) upon flash vacuum pyrolysis (FVP)[4] at 540°/0.01 Torr gave the expected ketoaldehyde <u>6b</u> [5] in high yield. Upon treatment with KOH in methanol <u>6b</u> was transformed into β -naphthol [6]. With ammonium acetate in methanol according to [7] quantitative conversion of <u>6b</u> to 3-methylisoquinoline 7b was accomplished.

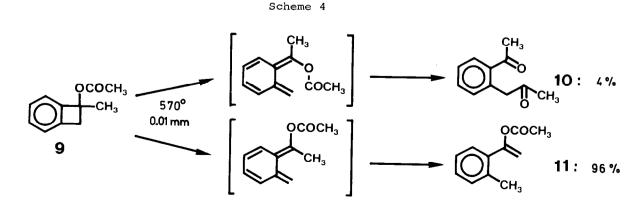
Conditions typical of FVP methodology [4] (short reaction time, low reactant partial pressure) favouring intramolecular versus intermolecular processes are essential for high yield in the conversion $4b \longrightarrow 6b$. Not surprisingly thermolysis of 4b in condensed phase (neat or as a 10% solution in 1,3-dichlorobenzene at 200°) gave no trace of ketoaldehyde 6b.

Isoquinolines $\underline{7}$ with a variety of substituents R in position 3 were prepared in good yield by the method described above for 7b (see table).

	R	4 b.p./Torr (m.p.)	7 b.p./Torr (m.p.)	Isolated yield
<u>a</u>	н	50-60°/0.1	55-65°/0.1	90 %
þ	CH ₃	55-65°/0.1 [8]	(62-63,5°) [9]	84 %
<u>c</u>	с (сн ₃) ₃	100-110°/0.1	80-100°/0.02 [10]	71 %
<u>d</u>	CH ₂ C ₆ H ₅	(38-42°)	(62 - 64°)	74 %
<u>e</u>	CF ₃	50-60°/0.1 [12]	(30-31°)	73 %
<u>f</u>	^C 6 ^H 5	(32-34°)	(100-102°) [10]	63 %
g	4-NO2-C6H4	(117-119°)	(185-189°)	43 %
<u>h</u>	4-CH ₃ O-C ₆ H ₄	(124-126°)	(98-100°) [10]	65 %
<u>i</u>	CH=CH-CH ₃	80-90°/0.1	(70-71,5°)	25 %
i	CH2-CH=CH2	80-90°/0.1	see Scheme 3	
<u>k</u>	(CH ₂) ₂ CH=CH ₂	90-95°/0.1	80-90°/0.05	41 %


<u>Table</u> Conversion of acyloxybenzocyclobutenes $\underline{4}$ to isoquinolines $\underline{7}$ according to scheme 2 ^{a)b)}.

a) Except for the conversion $4b \rightarrow 7b$ which has been carried out on a 30 g-scale the reactions reported in this table have been performed with samples of 0.5 - 1 g of ester 4 and reaction conditions have not been optimized.


b) All new compounds have been characterized by elemental analysis and full spectral data. Two limitations of the pyrolytic transformation $4 \longrightarrow 6$ shall be outlined:

<u>1</u>. With esters <u>4j</u> and <u>4k</u>, derived from unsaturated acids, intramolecular cycloaddition [1] competes with acyl migration. Thus <u>4j</u> yields no ketoaldehyde <u>6j</u> but only γ -lactone <u>8j</u> as a mixture of stereoisomers [13]. From <u>4k</u> a 3:1 mixture of <u>6k</u> and δ -lactone <u>8k</u> (trans isomer only) [14] is formed. It seems likely that the competing isomerisation pathways leading to <u>6</u> and <u>8</u> originate from stereoisomeric forms of the ortho-quinoid valence isomers of the starting esters <u>4j</u> and <u>4k</u> as indicated in Scheme 3.

Scheme 3

2. From tertiary esters such as 9 only a small amount of acyl migration product 10 (quantitatively transformed into 1,3-dimethylisoquinoline upon treatment with ammonia) is obtained. The major product is enol acetate 11, formed through hydrogen migration via the E-form of the reactive ortho-quinodimethane intermediate (see Scheme 4).

Benzocyclobutenone, the precursor of 4a - 4k (through LiAlH₄-reduction and esterification) is readily obtained by FVP of toluic acid chloride [15]. The synthesis of 3-substituted isoquinolines 7 from inexpensive starting materials (o-toluic acid, aromatic or aliphatic acid RCOOH, ammonia and LiAlH₄) described in this communication involves two pyrolytic reaction steps. It thus demonstrates the usefulness of FVP-methodology in preparative organic chemistry.

Acknowledgement: This investigation has been supported by the Swiss National Science Foundation (project No. 2.624.0.82) and by Ciba-Geigy Co.

Notes and References

- [1] W. Oppolzer, Synthesis 1978, 793.
- [2] P. Schiess, R. Dinkel and P. Fünfschilling, Helv. Chim. Acta 1981, <u>64</u>, 787, and previous references cited.
- [3] D.J. Field and D.W. Jones, J. Chem. Soc. Perkin Trans. 1, <u>1980</u>, 714 and previous references cited.
- [4] R.F.C. Brown, "Pyrolytic Methods in Organic Chemistry", Academic Press, New York, 1980.
- [5] All new compounds have been characterized by elemental analysis and spectroscopic data.
- [6] N.K. Hamer, J. Chem. Soc., Chem. Commun. <u>1977</u>, 239.
- [7] R.B. Miller and J.M. Finke, J. Org. Chem. 1980, 45, 5312.
- [8] H.H. Wasserman and J. Solodar, J. Am. Chem. Soc. 1965, 87, 4002.
- [9] F.W. Bergström and R.E. Paterson, J. Org. Chem. 1945, 10, 479.
- [10] C.K. Bradsher and T.G. Wallis, J. Org. Chem. 1978, 43, 3817.
- [11] J. Haginawa, I. Murakoshi and Y.Obe, J. Pharm. Soc. Japan 1959, <u>79</u>, 1578.
- [12] M.P. Cava and K. Muth, J. Am. Chem. Soc. 1960, 82, 652.
- [13] <u>8j</u>, cis-isomer: 70%, mp. 103-104°; ¹H-NMR (CDCl₃): δ 5,4 d, 1 H, J = 6 Hz. trans-isomer: 30%, mp. 136-137°; ¹H-NMR (CDCl₃): δ 4,9 d, 1 H, J = 9 Hz.
- [14] 8k, trans-isomer: mp. 138-141°; ¹H-NMR (CDCl₃): δ 5,1 d, 1 H, J = 8,3 Hz.
- [15] P. Schiess and M. Heitzmann, Angew. Chem. 1977, <u>89</u>, 485; Angew. Chem. Int. Ed. 1977, <u>16</u>, 469.

(Received in Germany 28 May 1985)

3962